房屋 合同 工作 演出 职工 音乐 动物 单位注册|登录

高中数学知识点总结

小豪 2024-09-01 21:21 #策划书
文章标签 函数

(实用)高中数学知识点总结

总结是在某一特定时间段对学习和工作生活或其完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析的书面材料,它是增长才干的一种好办法,不如我们来制定一份总结吧。但是却发现不知道该写些什么,以下是小编收集整理的高中数学知识点总结,供大家参考借鉴,希望可以帮助到有需要的朋友。

高中数学知识点总结1

考点一、映射的概念

1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应.包括:一对一多对一

考点二、函数的概念

1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数.记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的.y的值函数值,函数值的集合叫做函数的值域.函数是特殊的映射,是非空数集A到非空数集B的映射.

2.函数的三要素:定义域、值域、对应关系.这是判断两个函数是否为同一函数的依据.

3.区间的概念:设a,bR,且a

①(a,b)={xa

⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(—∞,b)={

考点三、函数的表示方法

1.函数的三种表示方法列表法图象法解析法

2.分段函数:定义域的不同部分,有不同的对应法则的函数.注意两点:①分段函数是一个函数,不要误认为是几个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.

考点四、求定义域的几种情况

①若f(x)是整式,则函数的定义域是实数集R;

②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;

③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

④若f(x)是对数函数,真数应大于零.

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零.

⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

高中数学知识点总结2

平均值等于每个小长方形面积(即概率)乘每组横坐标的中点,然后加和。

平均数,首先得直方图应该归一化,也就是说所有矩形的面积之和为1,然后每个矩形的面积代表其底边中点横坐标的数的频率,那么面积乘以横坐标就相当于频率乘以横坐标,得到的当然是平均数。

频率直方图中是没有样本数据的在某一个分组里,分布在这个分组的样本数据没法找得出来,然后也分布不均匀,所以就用这个组的中点的横坐标来表示这个分组的样本数据的平均值。

而每一个小长方形的面积是表示相应的频率,(相当于相应数据的百分比)所以平均数等于每个小长方形的面积乘以相应的分组的底边中点横坐标的之和。

频率分布直方图的运用

频率分布直方图能清楚显示各组频数分布情况又易于显示各组之间频数的差别。它主要是为了将我们获取的数据直观、形象地表示出来,让我们能够更好了解数据的分布情况,因此其中组距、组数起关键作用。

分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的'特征。当数据在100以内时,一般分5~12组为宜。

从频率分布直方图可以估计出的几个数据:

众数:频率分布直方图中最高矩形的底边中点的横坐标 。

算术平均数:频率分布直方图每组数值的中间值乘以频率后相加。

加权平均数:加权平均数就是所有的频率乘以数值后的和相加。

中位数:把频率分布直方图分成两个面积相等部分的平行于Y轴的直线横坐标。

高中数学知识点总结3

1.利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

2.利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

3.反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的"x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

4.进行集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进行求解。

5.在应用条件时,易A忽略是空集的情况

6.你会用补集的思想解决有关问题吗?

7.简单命题与复合命题有什么区别?四种命题之间的相互关系是什么?如何判断充分与必要条件?

8.你知道“否命题”与“命题的否定形式”的`区别。

9.求解与函数有关的问题易忽略定义域优先的原则。

10.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称。

11.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域。

12.原函数在区间[-a,a]上单调递增,则一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调。例如:。

13.你熟练地掌握了函数单调性的证明方法吗?定义法(取值, 作差, 判正负)和导数法

14. 求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示。

15.求函数的值域必须先求函数的定义域。

16.如何应用函数的单调性与奇偶性解题?

①比较函数值的大小;

②解抽象函数不等式;

③求参数的范围(恒成立问题).这几种基本应用你掌握了吗?

17.解对数函数问题时,你注意到真数与底数的限制条件了吗?

(真数大于零,底数大于零且不等于1)字母底数还需讨论

18.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?

19.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

20.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。若原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数.

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间.

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的"x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立.

高中数学知识点总结4

一、求导数的方法

(1)基本求导公式

(2)导数的四则运算

(3)复合函数的导数

设在点x处可导,y=在点处可导,则复合函数在点x处可导,且即

二、关于极限

1、数列的极限:

粗略地说,就是当数列的项n无限增大时,数列的项无限趋向于A,这就是数列极限的描述性定义。记作:=A。如:

2、函数的极限:

当自变量x无限趋近于常数时,如果函数无限趋近于一个常数,就说当x趋近于时,函数的极限是,记作

三、导数的概念

1、在处的导数。

2、在的导数。

3。函数在点处的导数的几何意义:

函数在点处的导数是曲线在处的切线的斜率,

即k=,相应的切线方程是

注:函数的导函数在时的'函数值,就是在处的导数。

例、若=2,则=()A—1B—2C1D

四、导数的综合运用

(一)曲线的切线

函数y=f(x)在点处的导数,就是曲线y=(x)在点处的切线的斜率。由此,可以利用导数求曲线的切线方程。具体求法分两步:

(1)求出函数y=f(x)在点处的导数,即曲线y=f(x)在点处的切线的斜率k=

(2)在已知切点坐标和切线斜率的条件下,求得切线方程为x。

高中数学知识点总结5

1.多动脑思考

2.强化自己学习训练

要是想学好高中数学,必须做的一件事就是做大量的题,数学不一定好,因袭要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的'基础上做一定量的定式训练是必要的。尽管复习时间紧张,但我们仍然要注意回归课本。要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

3.养成良好的学习习惯

学习高三数学必须养成良好的审解题解题习惯,如仔细阅读题目,看清数字,规范解题格式,做到审题要慢解题要快,注重过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。

高中数学知识点总结6

★高中数学导数知识点

一、早期导数概念————特殊的形式大约在1629年法国数学家费马研究了作曲线的切线和求函数极值的方法1637年左右他写一篇手稿《求最大值与最小值的方法》。在作切线时他构造了差分f(A+E)—f(A),发现的因子E就是我们所说的导数f(A)。

二、17世纪————广泛使用的“流数术”17世纪生产力的发展推动了自然科学和技术的发展在前人创造性研究的基础上大数学家牛顿、莱布尼茨等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”他称变量为流量称变量的变化率为流数相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷级数》流数理论的实质概括为他的重点在于一个变量的函数而不在于多变量的方程在于自变量的变化与函数的变化的比的构成最在于决定这个比当变化趋于零时的极限。

三、19世纪导数————逐渐成熟的理论1750年达朗贝尔在为法国科学家院出版的《百科全书》第五版写的“微分”条目中提出了关于导数的一种观点可以用现代符号简单表示{dy/dx)=lim(oy/ox)。1823年柯西在他的《无穷小分析概论》中定义导数如果函数y=f(x)在变量x的两个给定的界限之间保持连续并且我们为这样的变量指定一个包含在这两个不同界限之间的值那么是使变量得到一个无穷小增量。19世纪60年代以后魏尔斯特拉斯创造了ε—δ语言对微积分中出现的各种类型的极限重加表达导数的定义也就获得了今天常见的形式。

四、实无限将异军突起微积分第二轮初等化或成为可能微积分学理论基础大体可以分为两个部分。一个是实无限理论即无限是一个具体的东西一种真实的存在另一种是潜无限指一种意识形态上的过程比如无限接近。就历史来看两种理论都有一定的道理。其中实无限用了150年后来极限论就是现在所使用的。光是电磁波还是粒子是一个物理学长期争论的问题后来由波粒二象性来统一。微积分无论是用现代极限论还是150年前的理论都不是最好的手段。

高中数学导数要点

1、求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的.定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2、求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的

变化情况:

(4)检查f(x)的符号并由表格判断极值。

3、求函数的最大值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。

求函数f(x)在区间[a,b]上的最大值和最小值的步骤:(1)求f(x)在区间(a,b)上的极值;

(2)将第一步中求得的极值与f(a),f(b)比较,得到f(x)在区间[a,b]上的最大值与最小值。

4、解决不等式的有关问题:

(1)不等式恒成立问题(绝对不等式问题)可考虑值域。

f(x)(xA)的值域是[a,b]时,

不等式f(x)0恒成立的充要条件是f(x)max0,即b0;

不等式f(x)0恒成立的充要条件是f(x)min0,即a0。

f(x)(xA)的值域是(a,b)时,

不等式f(x)0恒成立的充要条件是b0;不等式f(x)0恒成立的充要条件是a0。

(2)证明不等式f(x)0可转化为证明f(x)max0,或利用函数f(x)的单调性,转化为证明f(x)f(x0)0。

5、导数在实际生活中的应用:

实际生活求解最大(小)值问题,通常都可转化为函数的最值。在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。

高中数学知识点总结7

轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

一、求动点的轨迹方程的基本步骤。

1、建立适当的坐标系,设出动点M的坐标;

2、写出点M的集合;

3、列出方程=0;

4、化简方程为最简形式;

5、检验。

二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

1、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

2、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

3、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

4、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的`轨迹方程,这种求轨迹方程的方法叫做参数法。

5、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

求动点轨迹方程的一般步骤:

①建系——建立适当的坐标系;

②设点——设轨迹上的任一点P(x,y);

③列式——列出动点p所满足的关系式;

④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

⑤证明——证明所求方程即为符合条件的动点轨迹方程。

高中数学知识点总结8

一、集合有关概念

1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。

2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性.

3、集合的表示:(1){?}如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(2).用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}4

.集合的表示方法:列举法与描述法。

常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+整数集Z有理数集Q实数集R

5.关于“属于”的概念

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作a∈A,相反,a不属于集合A记作a?A

列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表

示某些对象是否属于这个集合的方法。6、集合的分类:

(1).有限集含有有限个元素的集合(2).无限集含有无限个元素的集合

(3).空集不含任何元素的集合例:{x|x2=-5}=Φ

二、集合间的基本关系

1.“包含”关系—子集注意:A?B有两种可能(1)A是B的一部分,;(2)A与B是同一集合。反之:集?B或B??A合A不包含于集合B,或集合B不包含集合A,记作A?

2.“相等”关系:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B

①任何一个集合是它本身的子集。即A?A

②如果A?B,且A?B那就说集合A是集合B的真子集,记作A B(或BA)

③如果A?B,B?C,那么A?C④如果A?B同时B?A那么A=B

3.不含任何元素的集合叫做空集,记为Φ

规定:空集是任何集合的子集,空集是任何非空集合的真子集。三、集合的运算

1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.

记作A∩B(读作"A交B"),即A∩B={x|x∈A,且x∈B}.

2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作"A并B"),即A∪B={x|x∈A,或x∈B}.

3、交集与并集的性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,

A∪φ=A,A∪B=B∪A.

4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即A?S),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作:CSA即CSA={x?x?S且x?A}

(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,看作一个全集。通常用U来表示。

(3)性质:⑴CU(CUA)=A⑵(CUA)∩A=Φ⑶(CUA)∪A=U二、函数的有关概念

合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的`.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(7)实际问题中的函数的定义域还要保证实际问题有意义.

2.构成函数的三要素:定义域、对应关系和值域

再注意:(1)由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)

3.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.4.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A?B为从集合A到集合B的一个映射。记作“f:A?B”

给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a叫做元素b的原象

说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。

5.常用的函数表示法:解析法:图象法:列表法:

6.分段函数在定义域的不同部分上有不同的解析表达式的函数。(1)分段函数是一个函数,不要把它误认为是几个函数;

(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.7.函数单调性(1).设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1r;P在⊙O上,PO=r;P在⊙O内,PO

2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定

理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

5.一条弧所对的圆周角等于它所对的圆心角的一半。

6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

7.不在同一直线上的3个点确定一个圆。

8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。

9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距

离):

AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO

10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。

11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):

外离P>R+r;外切P=R+r;相交R-r

三、有关圆的计算公式

1.圆的周长C=2πr=πd

2.圆的面积S=s=πr?

3.扇形弧长l=nπr/180

4.扇形面积S=nπr? /360=rl/2

5.圆锥侧面积S=πrl

四、圆的方程

1.圆的标准方程

在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是

(x-a)^2+(y-b)^2=r^2

2.圆的一般方程

把圆的标准方程展开,移项,合并同类项后,可得圆的'一般方程是

x^2+y^2+Dx+Ey+F=0

和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2

相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r.

五、圆与直线的位置关系判断

平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是

讨论如下2种情况:

(1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0.

利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:

如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交

如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切

如果b^2-4acr

13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线

14.切线的性质定理 圆的切线垂直于经过切点的半径

15.推论1 经过圆心且垂直于切线的直线必经过切点

16.推论2 经过切点且垂直于切线的直线必经过圆心

17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角

18.圆的外切四边形的两组对边的和相等 外角等于内对角

19.如果两个圆相切,那么切点一定在连心线上

20.①两圆外离 d>R+r ②两圆外切 d=R+r

③两圆相交 R-rr)

④两圆内切 d=R-r(R>r) ⑤两圆内含dr)

21.定理 相交两圆的连心线垂直平分两圆的公共弦

22.定理 把圆分成n(n≥3):

(1)依次连结各分点所得的多边形是这个圆的内接正n边形

(2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

23.定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

24.正n边形的每个内角都等于(n-2)×180°/n

25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长

27.正三角形面积√3a/4 a表示边长

28.如果在一个顶点周围有k个正n边形的角,由于这些角的和应为 360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

29.弧长计算公式:L=n兀R/180

30.扇形面积公式:S扇形=n兀R^2/360=LR/2

31.内公切线长= d-(R-r) 外公切线长= d-(R+r)

32.定理 一条弧所对的圆周角等于它所对的圆心角的一半

33.推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等

34.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所 对的弦是直径

35.弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r

高中数学知识点总结13

一、高中数列基本公式:

1、一般数列的通项an与前n项和Sn的关系:an=

2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。

3、等差数列的前n项和公式:Sn=

Sn=

Sn=

当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。

4、等比数列的通项公式: an= a1qn-1an= akqn-k

(其中a1为首项、ak为已知的第k项,an≠0)

5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

当q≠1时,Sn=

Sn=

二、高中数学中有关等差、等比数列的结论

1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则

3、等比数列{an}中,若m+n=p+q,则

4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

7、等差数列{an}的'任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

10、三个数成等比数列的设法:a/q,a,aq;

四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?)

高中数学知识点总结14

方差定义

方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是各个数据分别与其平均数之差的`平方的和的平均数。

方差性质

1.设C为常数,则D(C)=0(常数无波动);

2.D(CX)=C2D(X)(常数平方提取);

3.若X、Y相互独立,则前面两项恰为D(X)和D(Y),第三项展开后为

当X、Y相互独立时,故第三项为零。

独立前提的逐项求和,可推广到有限项。

方差的应用

计算下列一组数据的极差、方差及标准差(精确到0.01).

50,55,96,98,65,100,70,90,85,100.

答:极差为100-50=50.

高中数学知识点总结15

导数的应用

1.用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益问题

3)面积、体积最(大)问题

高中数学知识点总结

分层抽样

先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系用抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。

两种方法

1.先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。

2.先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的方法抽取样本。

3.分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不同的子总体中的样本分别代表该子总体,所有的样本进而代表总体。

分层标准

(1)以调查所要分析和研究的主要变量或相关的变量作为分层的标准。

(2)以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

(3)以那些有明显分层区分的变量作为分层变量。

函数的奇偶性

1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)(或f(-x)=f(x)),那么函数f(x)就叫做奇函数(或偶函数).

正确理解奇函数和偶函数的定义,要注意两点:(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要不充分条件;(2)f(x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.(奇偶性是函数定义域上的整体性质).

2、奇偶函数的定义是判断函数奇偶性的主要依据。为了便于判断函数的奇偶性,有时需要将函数化简或应用定义的等价形式:

注意如下结论的运用:

(1)不论f(x)是奇函数还是偶函数,f(|x|)总是偶函数;

(2)f(x)、g(x)分别是定义域D1、D2上的奇函数,那么在D1∩D2上,f(x)+g(x)是奇函数,f(x)·g(x)是偶函数,类似地有“奇±奇=奇”“奇×奇=偶”,“偶±偶=偶”“偶×偶=偶”“奇×偶=奇”;

(3)奇偶函数的复合函数的奇偶性通常是偶函数;

(4)奇函数的'导函数是偶函数,偶函数的导函数是奇函数。

3、有关奇偶性的几个性质及结论

(1)一个函数为奇函数的充要条件是它的图象关于原点对称;一个函数为偶函数的充要条件是它的图象关于y轴对称.

(2)如要函数的定义域关于原点对称且函数值恒为零,那么它既是奇函数又是偶函数.

(3)若奇函数f(x)在x=0处有意义,则f(0)=0成立.

(4)若f(x)是具有奇偶性的区间单调函数,则奇(偶)函数在正负对称区间上的单调性是相同(反)的。

(5)若f(x)的定义域关于原点对称,则F(x)=f(x)+f(-x)是偶函数,G(x)=f(x)-f(-x)是奇函数.

(6)奇偶性的推广

函数y=f(x)对定义域内的任一x都有f(a+x)=f(a-x),则y=f(x)的图象关于直线x=a对称,即y=f(a+x)为偶函数.函数y=f(x)对定义域内的任-x都有f(a+x)=-f(a-x),则y=f(x)的图象关于点(a,0)成中心对称图形,即y=f(a+x)为奇函数.

二项式定理

①(a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+…+Cnran-rbr+-…+Cnn-1abn-1+Cnnbn

特别地:(1+x)n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn

②主要性质和主要结论:对称性Cnm=Cnn-m

二项式系数在中间。(要注意n为奇数还是偶数,答案是中间一项还是中间两项)

所有二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+…+Cnr+…+Cnn=2n

奇数项二项式系数的和=偶数项而是系数的和

Cn0+Cn2+Cn4+Cn6+Cn8+…=Cn1+Cn3+Cn5+Cn7+Cn9+…=2n-1

③通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。

内容声明:本文中引用的各种信息及资料(包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主体(包括但不限于公司、媒体、协会等机构)的官方网站或公开发表的信息。部分内容参考包括:(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供参考使用,不准确地方联系删除处理!本站为非盈利性质站点,本着为中国教育事业出一份力,发布内容不收取任何费用也不接任何广告!)
免责声明:我们致力于保护作者版权,注重分享,当前被刊用文章因无法核实真实出处,未能及时与作者取得联系,或有版权异议的,请联系管理员,我们会立即处理! 部分文章是来自自研大数据AI进行生成,内容摘自(百度百科,百度知道,头条百科,中国民法典,刑法,牛津词典,新华词典,汉语词典,国家院校,科普平台)等数据,内容仅供学习参考,不准确地方联系删除处理!邮箱:344225443@qq.com)

图片声明:本站部分配图来自网络。本站只作为美观性配图使用,无任何非法侵犯第三方意图,一切解释权归图片著作权方,本站不承担任何责任。